W

7

[AEAR

NSEC/Resilience

Report External Penetration Test

Thinkwise Platform

Version 1.2, May 8th 2023

nSEC/Resilience — Report Penetration Test

Date Version Comments

27/02/2023 0.1 Initial draft for internal review
22/03/2023 1.0 Final version for client
03/05/2023 1.1 Updated version after retest
08/05/2023 1.2 Updated after customer feedback

nSEC/Resilience — Report Penetration Test

Table of Contents

1 - Management Summary 5
2 — Scope and context 7
3 —Test approach and process evaluation 8
4 — Reconnaissance phase 9
4.1 - Public information sources 9
4.2 — Vulnerability scan and manual reconnaissance 10
4.3 — Network level scan 11

5 — Penetration Test: application level 12
5. 1 — Authentication and Session management 12
5.1.1 — Login mechanism 12
5.1.2 — Password change mechanism 16
5.1.3 — Session management 23

5.2 — Broken Access Control 25
5.2.1 - Access without authentication 25
5.2.2 - Access to functions with higher privilege levels 28

5.3 — Unrestricted File Upload 32
5.4 — Directory traversal and Remote file inclusion 36
5.5 — Cross-site scripting (XSS) 37
5.6 —-SQL injection 40
5.7 — SSL/TLS checks 41
5.8 — Error handling 42
5.8.1 — Client errors (4xx) 42
5.8.2 — Server errors (5xx) 43

5.9 — Sensitive data exposure 44
5.10 — Security (mis)configuration 46
5.10.1 — Stack information in HTTP response messages 46
5.10.2 — HTTP Security Headers 47
5.10.3 — Cookie settings 48

6 — Audit results 49
6.1 — General comments 49

6.2 — (T)SQL for business logic 50

6.3 — Implementation database connection (ADO.NET) 51

6.4 — Preview components 52

nSEC/Resilience — Report Penetration Test

7 — Conclusion and recommendations

Appendix A — Results DNS reconnaissance

55

nSEC/Resilience — Report Penetration Test

1 - Management Summary

Thinkwise B.V. (from hereon: Thinkwise) is creator and owner of the Thinkwise Low Code
software platform, which can be used to build robust software applications for clients in a
short period of time, making use of the functionality and technology that is part of the
platform.

To be able to prove to customers that the Thinkwise Low Code platform is sufficiently
secure, Thinkwise has mandated nSEC/Resilience to perform a penetration test on the
platform. This penetration test was expanded with a number of audit-like checks.

During the initial penetration test on the example application of the Thinkwise platform no
findings of high or critical severity were done. Testers did not succeed in obtaining significant
amounts of sensitive data nor take control of the server. This is a good result.

The audit also did not produce findings that required immediate actions.

After receiving feedback from Thinkwise on the initial findings, and retesting of fixed
findings, only a small number of low severity findings remained. These findings of low
severity can be seen as findings for which there is no direct urgency to address them, but
implementing solutions for these findings will further raise the bar for potential attackers
and establish a baseline that would give customers or external auditors increased
confidence.

nSEC/Resilience — Report Penetration Test

Chapter 6 of the report provides a complete overview of all the findings. Below is an
overview giving the results, per category (as identified by OWASP).

Topic/area Test result

Network level Good — no vulnerabilities found
Auth & session management Findings —2x low severity

Broken Access Control Good — no vulnerabilities found
Unrestricted File Upload Good — no vulnerabilities found
Directory traversal / File inclusion Good — no vulnerabilities found
Cross-site scripting (XSS) Good — no vulnerabilities found
SSL/TLS Good — no vulnerabilities found
SQL injection Good — no vulnerabilities found
Error handling Good — no vulnerabilities found
Sensitive data exposure Finding — 1x low severity

Security (mis)configuration Good — no vulnerabilities found

Audit Good — no vulnerabilities found

nSEC/Resilience — Report Penetration Test

2 — Scope and context

Thinkwise B.V. (from hereon: Thinkwise) is creator and owner of the Thinkwise Low Code
software platform, which can be used to build robust software applications for clients in a
short period of time, making use of the functionality and technology that is part of the
platform.

To be able to prove to customers that the Thinkwise Low Code platform is sufficiently
secure, Thinkwise has mandated nSEC/Resilience to perform a penetration test on an
example application built using the platform.

Due to the nature of the application / platform, nSEC/Resilience has advised to also consider
adding audit elements to the security evaluation on the platform. These audit elements will
expand the coverage of the test activities to include more elements that are difficult to cover
from an external dynamic penetration test. The results of this white box audit are also
included in this report.

The attack surface (areas of the information system that an attacker or security evaluator
can choose to initiate an attack) for the penetration test was defined as, and limited to:

e https://nsecresilience.thinklab.cloud/ (General)
e https://nsecresilience-prod.thinklab.cloud/universal/ (User interface)
e https://nsecresilience-prod.thinklab.cloud/indicium/iam/insights (Application tier)

It was explicitly allowed as part of the penetration test to investigate and exploit
vulnerabilities in the assets in scope, as long as direct attack surface was limited to the
definition above.

During the penetration test forensic research, code reviews and exhaustive DDOS testing
were out of scope.

nSEC/Resilience — Report Penetration Test

3 —Test approach and process evaluation

For the penetration test, 40 hours of testing was allocated. The testers received three test
accounts for the Insights application, each with different access rights, so that proper tests
for access control could take place. As such, the penetration test was executed grey-box.

Methodologically, the penetration test was performed in line with the PTES (infrastructure
level) and OWASP WSTG (application level).

Reconnaissance for the penetration test was performed with industry-standard tooling
(scanners and scripts) and by manually searching through public available sources. At
network level also open ports and active services were investigated.

During the execution- and exploitation phase various tools were used. However, majority of
the checks were performed manually, where internet traffic was investigated and
manipulated with proxy tooling.

For the audit elements two resource days were allocated. The activities were for the largest
part performed on location in Apeldoorn by two resources working in parallel.

No issues occurred during test execution.

After initial testing, Thinkwise gave feedback on the communicated findings. Some findings
were not regarded as risk (or regarded as working as designed) and one finding was fixed
and retested. This report describes the results after retest.

nSEC/Resilience — Report Penetration Test

4 — Reconnaissance phase

Goal of the reconnaissance phase is to collect data from public sources and non-intrusive
scans. Results from the reconnaissance phase give valuable information to be used in the
execution phase.

4.1 — Public information sources

The following results are gathered from the open source intelligence reconnaissance phase
(only the most relevant results are mentioned):

e See the full list of subdomain enumeration in Appendix A — DNS reconnaissance

e The identified domains have been checked using a tool that automatically makes
screenprints based on a list of domains. No relevant results followed from these
checks

e The IP addresses that corresponded to the identified subdomains were added to the
scope for the external network level checks

® Search engine reconnaissance showed that job vacancy information contains

technology information:

@ werkenbijthinkwise.nl/vacancy/sr-c-software-engineer 2 Y

STAGE & AFSTUDEREN OVERONS v CONTACT Q

gebruikersinterface op met componenten. We laten je graag zien hoe dat in elkaar zit.

Je vindt het leuk om:

Features te ontwikkelen die door duizenden gebruikers worden gebruikt;

Bugs op te lossen;

Collega’s te helpen met pull-requests, code reviews en pair-programming;

Na te denken over technische keuzes, zoals onze architectuur, tools en processen;
Om zelf ideeén in te brengen en deze zelf ook te kunnen realiseren;

Te werken in een CI/CD omgeving;

De kwaliteit van de code te bewaken met behulp van unit tests.

Daarnaast:

Heb je ervaring met Git, C# en .NET core;

Je hebt een BSc of MSc in bijvoorbeeld Informatica;

Je hebt 3 + jaar ervaring als C# Engineer;

Je bent analytisch ingesteld;

Je bent Agile/Scrum georiénteerd, succes is voor jou een team effort;

Een goede beheersing van zowel de Nederlandse als de Engelse taal in woord en geschrift en ben je woonachtig in
Nederland.

nSEC/Resilience — Report Penetration Test

e Search for externally exposed software repositories did not yield results
e No other results were obtained from open source reconnaissance

4.2 — Vulnerability scan and manual reconnaissance

In addition to the collection of data from public sources, several vulnerability scans were
performed with various tools, including the industry standard tool NetSparker and OWASP
ZAP. Additionally, manual reconnaissance was performed to identify the application stack
and attack vectors for the execution phase. The most relevant results:

e Manual reconnaissance reports that the target application is built on a Microsoft
stack (11S/10.0) with ASP.net

e Brute force directory and file scanners produced only a few results, none of which
were relevant for the further investigation

e Exploration of the workflow shows various functionality that can be explored further,
in particular upload functionality and preview functionality

e Many of the notifications from the scans were also found with manual checks/tests
and are described in the paragraphs of Chapter 5

10

nSEC/Resilience — Report Penetration Test

4.3 — Network level scan

In addition to the analysis of public sources, various scans have been performed on network
level. These scans were performed using at least the industry standard tools Nessus and
Nmap.

The main IP address (20.170.5.72) was scanned on network level, with the following results:

Port Protocol Status Service Details
80 TCP Open HTTP Azure application gateway
443 TCP Open HTTPS Azure application gateway

Next to the regular TCP network level scans, various firewall evasion techniques were
deployed and UDP scanning was executed. From these checks, no findings were done on
network level for the main IP address in scope.

11

nSEC/Resilience — Report Penetration Test

5 — Penetration Test: application level

Following the outcomes of the reconnaissance phase, a number of aspects are analyzed in
more detail. The executed actions and analyses are discussed in the following paragraphs,
classified according the OWASP top 10.

5. 1 — Authentication and Session management
5.1.1 — Login mechanism

Upon login to the insights application (user interface) via https://nsecresilience-
prod.thinklab.cloud/universal/, by default a username and password was required before
any other interaction with the application was possible:

Options

https://nsecresilience-prod.thinklab.cloud/indicium,

12

%@@

nSEC/Resilience — Report Penetration Test

When either the username or password is incorrect, a neutral error message is returned.
This prevents the login mechanism from being used for user enumeration which is good. On
the login screen, a meta server URL and an application and platform could be configured.

It was attempted to change the meta server URL to a server in control of the testers, to see if
credentials could be intercepted in this way. Doing so it was noticed that one request was
intercepted by the server in our control:

The source IP address however was an attacker IP address and not an IP address controlled
by Thinkwise (meaning that no SSRF attacks were possible).

When submitting the login credentials a POST request is made to
/indicium/account/apio/login with the username and password in the request body:

13

nSEC/Resilience — Report Penetration Test

A 204 “No Content” response is then returned together with an
.AspNetCore.ldentity.Application cookie, which acts as session cookie for the application.

When successfully authenticated, this cookie is used for authorizing further requests made
in the application.

An alternative login function for indicium local login was found via https://nsecresilience-
prod.thinklab.cloud/indicium/account/ui/locallogin:

-

think
wise.

[J staysignedin

Similar to the previous login, upon successful authentication a
AspNetCore.ldentity.Application is set.

14

nSEC/Resilience — Report Penetration Test

This cookie holds the same authorization as the cookie that is returned by the user interface

login however upon successful login the user is not immediately redirected to the user
interface.

i

think
wise.

Version: 2023.1
Build: 10.0
Metasource version: 2023.1
Agent: 028ca2ed-eb20-4fa5-9edb-186e13140207

You are logged in as: demo"><svg/onload=alert(1)> ni<img
m Change password

Using a higher privileged admin account with access to IAM, further login options could be
configured, directly affecting the login mechanism.

&] Login

Password

Password
Password and email

Password and SMS

Password and TOTP token

In the login mechanisms as configured, no vulnerabilities were identified.

15

nSEC/Resilience — Report Penetration Test

5.1.2 — Password change mechanism

For the Insight application there are possibilities to change user passwords:

By regular users, for their own accounts (if enabled in the IAM)

By a higher privileged user

I

The highly privileged user is responsible for setting appropriate security configurations such
as password strength and expiration policy. Settings such as password expiry are not set by
default.

&) Login

Login verification

Password

ﬁ Password

Allow change

Never expires

Force expired

Default expiration policy
Never expires
Configuration

Complete

Application language
ENG

Time zone
Etc/UTC

r

16

nSEC/Resilience — Report Penetration Test
Password change for IAM user (high privilege):

The IAM user (high privilege) is able to change passwords on behalf of users via the “update
password” function. The password policy can be configured via IAM.

Update password

Confirm password

0/5

17

nSEC/Resilience — Report Penetration Test

Password change for Insights user (low privileged):

If enabled by the IAM user, a lower privileged insights application user is able to change their
own password. In this case the current password is required, which is good:

think
wise.

Wachiwoord wijzigen

18

%@@

nSEC/Resilience — Report Penetration Test

In the backend this current password is also passed on and a valid session cookie is required
for the request to be successful:

It is in general recommended to enforce password policies by default instead of making it
optional for the high privileged user to configure. This will help push the use of stronger
passwords for applications and users making use of the Thinkwise software. However
because the password policy can be defined by any organization through IAM no finding is
included.

19

nSEC/Resilience — Report Penetration Test

Password reset (unauthenticated)

The Insights application also contained a password reset mechanism in the form of a
“password forgot” function for unauthenticated users (if password recovery is allowed by
the administrator).

In this case a username must be entered, after which an email with a unique token is sent
via e-mail that can be used to reset the password.

This function is not sensitive to username enumeration; the same response is given
regardless of whether the input was correct or not.

- k x -

-

nsecresilience-prod.thinklab.cloud/indicium/a: int/ui/resetPassw

Q

think
wise.

Code opnieuw versturen Wachtwoord wijzigen

0

20

nSEC/Resilience — Report Penetration Test

After an existing username is entered, the user should receive an email with a validation
token that has to be entered together with a new password:

i

think
wise.

Enter token and new

password

Validation token

New password

Confirm password

Resend token Change password

When an invalid or no validation token is entered, an error is returned indicating that the
token is incorrect:

0 The validation token you have entered is invalid.

Please try again.

21

nSEC/Resilience — Report Penetration Test

When checking the received e-mail it is observed that the validation token is a 6-digit code,
for example:

From: ServiceDesk <vdoppenberg@thinkwisesoftware.com>

Sent: 01 March 2023 10:33:09 (UTC+01:00) Brussels, Copenhagen, Madrid, Paris
To: Test Account | nSEC/Resilience B.V. <ethical.hacker@nsec-resilience.com>
Subject: Your password reset token

Your password reset token: 649814

This code is tested to have an expiration time of under 30 minutes, which makes brute force
attacks on this code less likely. However there is no brute force attack detection present on
the MFA function. An attacker seems to be able to try many combinations. It is advised to
add more protection on the backend by for example temporarily blocking a user when more
than 5 invalid MFA codes are submitted in a short timeframe. A finding of severity low was
added for this.

22

nSEC/Resilience — Report Penetration Test

5.1.3 — Session management

Checks were done for session management such as checks around validity, lifetime and data
storage.

It was found that sessions do not end within a specific period of inactivity or after browser
close. In some cases sessions remain active for longer periods due to specific requests
generated from the GUI keeping the session alive. The session is ended on browser close
(unless the user has selected the “remember me” option).

Generally it is desired from the perspective of security to by default have a mechanism for
automatic session timeout after a short period of inactivity (a few hours maximum) that
works in all situations, so that the user is forced to reauthenticate after not using an
application for some time.

A finding of severity low was added for this observation, with the recommendation to
enforce that a session timeout is implemented by default and is active in all scenario’s.

It was also found that after a user explicitly logs out via the logout function, requests made
with the old session cookie (.AspNetCore.ldentity.Application) would still return a valid
response, some time after the user had logged out.

23

nSEC/Resilience — Report Penetration Test

This means in the backend the session cookie is not immediately invalidated after explicit
logout and can still return data that requires authentication. Because the sessions are short-
lived and implementation of a fix would be very difficult (and potentially in conflict with
leading RFCs) no finding will be included.

Time Server Database Duration Statement

@hand|
28022023 nsecresilience-thinklab- declare @handle int

hiakistmdain 13:41:03.2740071 sqgl.germanywestcentral.azurecontainer.io 1amM “ fﬁé;ggiz;ﬁj;j?g’:f_;gj;N;giﬁ';i’ﬁ:’i‘;é NSELECT * FROM Lcore_gul_appl
declare @p0 varchar(100)
set @p0=null
declare @p1 varchar(150)
set @p1="AlzaSyAlB-Js9dcX0YBTUAZSOmkipgpkd_4W0w
declare @p2 int
set @p2=null

28-02-2023 nsecresilience-thinklab- declare @p3 varchar(max)

hinkiabadmin 13:41:00.0536724 sql.germanywestcentral.azurecontainer.io INSIGHTS 39 set @p3=null
declare @p4 int
set @pé=1
exec prc_save_customer_coordinates_get_customers_without_address @address=@p0
outnut. @ani kev=m01 outout. @customer id=@02 outoul. @resnonse content=mMn3 outout

Local browser storage was found to be mostly empty, not containing any sensitive or
interesting data:

C e x

workbox-APPL_GUID'S_ARRAY-hitps.//nsecresiience-prod.thinklab.doud/ [BAESF2C9-59DE-4064-95A5-2084038 164197

No further findings were done with regards to session management.

24

nSEC/Resilience — Report Penetration Test

5. 2 — Broken Access Control

With broken access control, an attacker exploits references to objects or functions to access
resources that the attacker is not authorized for. Often this only can be exploited if the
authentication management/session management is inadequate. Examples can be
references to files with predictable file names, or manipulating function parameters such as
an organization ID.

For the Insights example application access control was checked from two perspectives: an
attacker without any access to the application, and an attacker with a form of access trying
to access functions/data corresponding to a higher access level.

5.2.1 - Access without authentication

Necessary checks where done to understand if an attacker can obtain unauthorized access
to functions and/or data that they should not have access to.

The platform is set up to require a valid .AspNetCore.ldentity.Application cookie in order to
retrieve information.

When this cookie is not present or invalid in a request, a “401 Unauthorized” error is
returned as seen on the screenshot below:

25

nSEC/Resilience — Report Penetration Test

This behavior was found to be consistently present; no exceptions were found.

Since the platform makes use of Microsoft’s OData standard for the API layer it was also
tested if the OData metadata file could be retrieved without authentication. This is relevant
because a publicly retrievable metadata file can expose application structure and
parameters that could help an attacker find vulnerabilities.

The OData metadata file could however not be retrieved without authentication. Attempts
to do so returned a “401 Unauthorized” response, which is good:

The same result followed for the OpenAPI documentation which can be used to view
available API calls.

26

%@@

nSEC/Resilience — Report Penetration Test

No findings were done for access without authentication.

27

nSEC/Resilience — Report Penetration Test

5.2.2 - Access to functions with higher privilege levels

In this context, the vertical privilege escalation scenarios were investigated. Checks were
performed to ensure that access control between different privileges is implemented
correctly and consistently.

Various functions/endpoints for the application in-scope were tested across the different
roles provided for the applications. As one user has access to the IAM application while the
other has not, these could be tested for vertical privilege escalation.

As one of the tests, it was tried to edit the details of another user as low privileged user, by
intercepting the request from the IAM to do so and replacing the session cookie:

As seen in the screenshot above, the other user does not seem to exist in the context of the
low privileged user and a 404 not found error is returned. A 404 error is also returned when
a GET request is made to retrieve another user.

Administrators in the IAM application have the ability to change passwords on behalf of a
user. It was attempted to intercept the request to change a user’s password and change the
session cookie to that of a low privileged user (that does not have access to this function) to
see if the password of another user could be updated this way. As seen on the screenshot
below, updating the password via this function does not require the current password:

28

nSEC/Resilience — Report Penetration Test

After replacing the session cookie and sending the request however, a 404 “not found” error
is returned, indicating this vertical privilege escalation attack did not succeed which is good.

29

nSEC/Resilience — Report Penetration Test

Trying to access database event logs as low privileged user, a “401 Unauthorized” error is
returned and the user is redirected to login screen:

Using the OData metadata file, further checks were done to see if the low privileged user
(demo_nl) could access certain service document files that may reveal sensitive information.

For example the IAM admin user can access a service document with sensitive data such as
password hashes via:

e nsecresilience-prod.thinklab.cloud/indicium/iam/iam/usr

nsecresilience-prod.thinklab.cloud A W : Incognito

.ine wrap @
{ “—»odata context”

Re ien -ppTe
c/utC", ap,l lang_id":"ENG","authentication_type":3,"two_factor_authentication_type":
:'alse, "password_hash": "VGjIS+7hVogxgpba/agamv6z@PKmbXYs", "password_salt":"7WSeqTeqOyOikMspt4Plk

\eaole

totp_ac lback_to_ema

urkRpl4z4a”, aaSSrcrd algorithm": "PBKDF2-

SHA1:1000","allow_change_password”:false, "password_expiration_policy":2,"password_last_changed_on":"2021-05-

31707:30:01.12666672" , "password_changed_count™:9, "password_forgotten_count”:1,"write_back_up_type_id":5,"insert_user":"Thinkwise","insert_da

time":"2017-05-30T11:31:55.0272", “update_user”:"Thinkwise", "update_date_time":"2020-07-96713:39:05.0532"},

{ tenant_id":1,"usr_id":"Carlos. 511°h , :rs: ﬁaﬂe":"Ca—:os","sur_nane":“Smit“","ﬂa—e' "Carlos Smith
Carlos.Smith)" ge*c*r :8,"compa "Etc/UTC","appl_lang_id NG" , "authentication_type":0,"

:e":e,":otp_a ":false,"allow_fal lca i1 .o ema false,"allow_change_password":false,"password_expiration_pol

n":"2021-05-

31707:30:21.1266667Z", "password_changed_count™:@,"password_forgotten_count”:@,"write_back_up_type_id":5,"insert_user":"Thinkwise","insert_da

time":"2020-24-29714:16:11.4172","update_user"”:"Thinkwise","update_date_time":"2020-24-29714:16:41.292"},

":1,"usr_id":"demo_br","first_name":"demo","sur_name":"br","name":"demo br

(demo_br)","gender":9, "company_id":195,"time_zone_id UTC","appl_lang

BR","authentication_type":3,"two_factor_authentication_type":8,"totp_active"”

,"two_factor_authentication
":2,"password_last_change

Y

se,”

allow_fallback_to_email”:false,"password_hash":"kKéPeUrm

30

%‘

nSEC/Resilience — Report Penetration Test

When trying to access this as the low privileged user, a 404 “not found” error is returned.
The low privileged user could only retrieve his/her own data, not including any password
hashes:

(& view-source:https://nsecresilience-prod.thinklab.cloud/indicium/iam/iam

ine wrap
{"@odata.context":"https://nsecresilience-prod.thinklab.cloud/indicium/iam/iam/$Smetacatasi_uvi_usr","value":[{"usr_id'
(demo_t "gender”:9, "profile_picture":{"FileName": "nsecdanger. "iam/iam/i_ui_usr('demo_nl")/SQLSERVER_IA!

low_change_password"”:true,"appl_lang_id":"NL","time_zone_id":"Etc/UTC","developer_mode":false}]}

origin"},

No findings were done with regards to vertical privilege escalation.

31

nSEC/Resilience — Report Penetration Test

5.3 — Unrestricted File Upload

With unrestricted file upload, an attacker uses the functionality to upload files. Instead of
valid files other vulnerable files are uploaded. For example, a remote shell can be uploaded

so that control can be taken on the server.

For file upload checks focus was placed on the INSIGHTS application because the upload

functions that were present there are also available to normal end users (unlike the upload
functions in the IAM application, which only administrators can access).

First, testers identified the unique upload features present in the INSIGHTS application.

In the Insight application photos can be uploaded of an individual. Several tests have been
performed on this upload function. The first test was to upload files with potentially
dangerous file extensions, such as .exe, .html, etc.

FORM LisT HIERARCHY

General

[3) Photo 338

e 10,00

12,00

HOURS

HOUR ANALYSIS EMAILS (4 APPOINTMENTS

Date t
14-07-2022 Project for testing Monitor tests

20-06-2022 Project for automated testing Monitor automated tests Documentation
19-06-2022 Project for automated testing Monitor automated tests Documentation
18-06-2022 Project for automated testing Monitor automated tests Documentation
17-06-2022 Project for automated testing ~ Monitor automated tests Documentation
16-06-2022 Project for automated testing Monitor automated tests Documentation
26-05-2022 Project for automated testing Monitor automated tests Documentation
25052022 Finance project Reporting Administration
14-052022 Finance project Reporting Administration

Descript

Gewerkte uren

Gewerkte uren

Gewerkte uren

Gewerkte uren

Gewerkte uren

Gewerkte uren

Gewerkte uren

Gewerkte uren

Gewerkte uren

@ Demo Engels ~

L
Q

125,00

125,00

125,00

125,00

125,00

125,00

125,00

125,00

125,00

When a file with a disallowed file extension was selected in the Ul, the following error was

displayed:

€) unknown_image_type

It was not possible from the frontend/Ul to select a file with an extension other than image
file extensions, like jpeg, jpg, png, etc.

32

%‘

nSEC/Resilience — Report Penetration Test

However, it was possible to intercept the PATCH request (that makes up the first step in the
upload process) and change the file extension from (for example) .png to .html:

After this, the second upload request (a POST message) was also intercepted. The Content-
Type was changed to text/html and the request was sent:

33

nSEC/Resilience — Report Penetration Test

After these changes were applied, the request was sent to the backend server and the .html
file was successfully uploaded. This file was then temporarily available through a URL that
could be accessed, for example:

- https://nsecresilience-
prod.thinklab.cloud/indicium/iam/40/staged_employee(d7a460f3-301c-43e5-8253-
6f350cc6c4f1)/INSIGHTS.download_photo(file_id=null)?t=1677244462911

Once upload has been completed and the uploaded file is stored on the backend server it
cannot be opened in the context of the web application itself for example as part of a
preview function. The file is immediately downloaded locally and can then be opened in a
browser of choice. This mitigates most of the direct risk; if files with dangerous extensions
could be made to be rendered directly by the webserver, this could lead to code execution.

Checks in file upload functions require validations for file extensions on both the frontend
and backend. On the Insights application this was only the case on the frontend. However
for Thinkwise in general allowed file extensions can be configured in the Software Factory ni
the ‘extention whitelist’ setting that can be set for each ‘file storage location’. Because of
this possibility no finding will be included.

In addition to tests on validations of file extensions, tests were also performed with the goal
of establishing whether there is an active virus scanner active on the file upload
functionalities. For this purpose a so-called EICAR file was used. The EICAR Standard Anti-
Malware Test file is a special 'dummy' file which is used to test the correct operation of
malware detection scanners. When an EICAR test file is placed on a file system, any virus
scanner that is active on that file system will detect it exactly as if it were a malicious
program. Alternatively, some virus scanners can check file contents as part of the upload
function itself, and block files before they are placed on the operating system.

34

nSEC/Resilience — Report Penetration Test

In the case of the Insights application the EICAR file was uploaded without any restrictions:

Request

Raw Hex \n

1 POST /indicium/iam/40/staged_smployee (94023779-2518-4344-9d13-£58373ddbBcb) /upload photo HTTP/L.l

2 Host: nsecresilience-prod.thinklab.cloud

3 Cookie: .AspNetCore.Antiforgery.lo82RAq2iLg=
CE£DJIBHSSVhw)amRDoKadento-24 1£5KYGHF INaVPZ wdXKLqXpULef145y0z3 qUyWraNbM18TS 26 iRndNaoBZ03 MI Zn7Bv
ey_yzUSHK4RpanthrkylPRFNUp£YaWeXNYiPgXeDvID3EzY7PTRT0_Oxas; .AspNetCore.Identity.Application=
CE£DJIBHSSVbwiamRDoKadgqnto-24T7Ho4cCe02x LOpv-VgBAPUFXEH_depDP iabnéRUSXOPeHgROKIJP4hHI % ME 1 1VIQHE LCE

) MBOYOOQHT3naTxKC3 I1ieuOgvecRLItFVKTIVCHI iMzPhPazxcydwdt TVPVBVZCDpUTKKHGYnECAST] IR

4250%0n1HduYRqzwDA-PRINuvEQISSrNsHOQMK kdmSzLWRQAOTTOJx DQL7HAAAr Y4aP11AGoHGETIQALr IWUR1XzVGr zNRg

VJVS8zhE-wdDs8D LHFu2 pSxoGIsrKzF Vel UdEXG4gr go-HRYISEIGF3 Allg LKFkqXXe ZYRRE2 Dr ZHWhL3 MyUn I 7kSwoRe

Am-TdT_wlYqEKZgWp2PorF 1h4N7tqAcDBsVaLVg7sASKSImp 16Wi40k994v3KunonuoPR1gigRi QKshOxOufoDeuc ZnbRRK:

CzvdzORLZ 1-PNBKSaOuLE9glev_EBFUph5u423UNUqhO=3F ILDV-8dLhik-5R4DHVLKAPOVBRK7BmOwVAdvvAHgOpul T=Owg

kiiHzxyqChBCORUFDzEwItZ810zUgPG4cDs3dLeVaBr2NaoGOUVRTDY i0Le3DHaDyz3 nDpxCSRS: 1Ze2qulind 70

S8EHNEPKYRSXESEMeTF4KEOhsc3_lxw; ApplicationGatewayAffinityCORS=308£0d70753 4506189
ApplicationGatevayAffinity=30860d707537eh845deE189=e6he5Ee5E; . AspNetCore. Session=

CE£DJBHSSVbwjamRDoKadentos2B25Te3kfmhAag08dtV3 TS3 AHVAzYEKEKt % 1vETiuqdVQIL2 Ti0Ex7SEMD L]

udK1ujk7%2F27v5yb50h0Ckhdd imMs% 2 FalnvdZgXxJFxAGIGm734aZazUo5 T4 2B% 2BqDRotc TOS 2Fpuf I97N2scZTUTA;

Indicium.ApplClaim 48_4

CE£DJBHSSVbwjamRDoKadento-24JGRS 1X1S6mwS iKDEHQKXVIGTt 6 Z-8-J Aco ANINQe-Nt BSGR4vYZ saBRer ¢ RNGRXE YqHZJ

=Om9E zWhMIkShhELtcMcwzYSUpDG] CBDLAKDUT-thASSyiHaliAAF AM-279Xpi0cDFZ11FténxFe iwiGUEXal P Ldmyr CEHLE

0ccEy-5YhSqGIPvxORLETETL7kdIs7pVPATtIML INXLQUWO- 18 IRVPFr TIKx i8vQ-cqNOYCAdpKEVDIS00aP4QN LqBsa3KG

£4TqEvrJYpvRyahAsdi-3CDGV35gVEZgfI ENCVLASFgIQCT7=a=T75Dko; Indicium.UseLogSession 48=

CE£DJBHSSVhbviamRDoKadento-2587 LachsWdqvtet 1USnv301vs-Ql080EERLEXCN DPYGY4GhZ5=MHFE

UgD9yz9yshMZEEpZ wRE-AWSEVGCFt Loe i0BTLA3hDDWF Wg-LREU23 122 TID-GaBXr K8KzgSusleltMqr302

1gRVus_716HETYnLpr 6p0Lxfkg5igshRFEVTs4nnsus557A; Indicium.ApplClaim_48_40=

CE£DJBHESVhwiamRDoKadento-25UyXYKRMpEL lrhexUZEPVSKLEGQQBpNtBLtPiqOJ SmsEdoaq_RYEFB3BR-3z7GS5TouyG50

KV9sSBrG-aZtNKLVIptUnTObJ33302929633 LGzt y7 LnxthOomwdD YkLRHKCEh2 5p0x tODPZRE AW IVES 2 1505-a5G] XEduF O

OXnNAht 10HFpBN-wFs2524vI1Ac3rZIrhLmQ_) kOC LkY-pcHEzPuyTxuzDiBiXhvOFk_INXag9YcRR8pxSguXhcepZH—

0-vyeGy2PLLVEK_398X0-03ERK]2CvgpNYLGOViZH3c7GhOr~8F 1pbRp T

Content-Length: &8

5 Sec-Ch-Ua: "Not A(Brand”;v="24", "Chromium";v="110"

Sec-Ch-Ua-Platform: "Windows"

7 Sec-Ch-Ua-Mobile: 20

® User-Agent: Mozilla/5.0 (Vindows NT 10.0; Vin€4; x£4) AppleVWebKit/537.36 (KHTML, like Gecko)
Chrome/110.0.5481.78 Safari/537.36

@ Content-Type: application/vnd.microsoft.portable-executable

) Accept: */*

1 Origin: https://nsecresilience-prod.thinklab.cloud

2 Sec-Fetch-Site: same-origin

3 Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Referer: https://nsecresilience-prod.thinklab.cloud/universal/

¢ Accept-Encoding: gzip, deflate

7 Accept-Language: nl-NL,nl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close

YnMdX_Ta
-82zbGZHR

) X50!PS@AP[4)PZX54 (P")7CC) 7} $EICAR-STANDARD-ANTIVIRUS-TEST-FILE ! §H+H*

Since the EICAR file was not blocked by the webserver it did not seem that any virus scanner
is active on the location where these files are saved. Since the file after saving the data, with
the HR employees for example, is immediately downloaded locally into the client's browser,
this can bring a risk with it. In general the advice is to make sure that there is a virus scanner
active on the file system to which files are uploaded. Because the implementation of security
measures in this form are the responsibility of partner organizations or end users, no finding
will be included for this.

35

nSEC/Resilience — Report Penetration Test

5.4 — Directory traversal and Remote file inclusion

With directory traversal it is possible to change the URL of the web application in such a way
that files in other directories (outside the location of the files of the web application) can be
accessed. With remote file inclusion same thing happens but this is done through including
remote files through file parameters in functions.

Moderate manual testing was done on regular directory traversal based on windows
directories and files, respectively in both regular format as encoded format. As automated
tool, next to NetSparker and OWASP ZAP also dotdotpwn was used. No vulnerabilities were
identified. For file inclusion no attack vectors were identified.

36

nSEC/Resilience — Report Penetration Test

5.5 — Cross-site scripting (XSS)

Cross-site scripting is a technique in which an attacker makes use of lack of sanitation of user
input. The attacker tries to leverage such as vulnerability by identifying a place where any
malicious input will be presented back to a user. The attacker then inputs malicious code, for
example to steal cookies and send them to the attacker, and waits for another user to trigger
the scripts. That way, the attacker can collect information or even control complete user
browser sessions.

During the penetration test various forms and functions with user input were tested for
cross-site scripting. Automated scans were used to test for reflected cross-site scripting
extensively. Stored XSS was investigated mainly using manual testing.

It was found that generally html/javascript injection attempts are blocked by consistently by
the application by applying entity encoding.

For example, using the admin IAM account, XSS payloads were injected inside the username
of demo_nl user, as the name field is referenced often within the application.

demo"><svg/onload=alert(1)> nl

Dark mode

The entity encoding was consistent across various reflected input fields:

37

nSEC/Resilience — Report Penetration Test

nsecresilience-prod.thinklab.cloud/indicium o a
% 0O o]

strong>Build: ng

think "3 100"

wise. o —

trong>Agent
": @28ca2ed-eb20-4fa5-9edb-186¢13140207 "
Version: 2023.1
Build: 10.0

Metasource version: 2023.1
Agent: 028ca2ed-eb20-4fa5-9edb-186e13140207

You are logged in as: demo"><svg/onload=alert(1)> ni

However some exceptions were found, mainly by making use of the earlier found
unrestricted file upload vulnerabilities across file upload functions.

For example in the insights application -> projects -> documents section, it was possible to
upload any file, which could hen be previewed inside the application. By uploading a .html
file it was possible to get HTML code reflected inside the application:

T [T TR - B

test

B pocument B pescription

3]

Ekios - Registration Material Balance test

51

Gipple & hale

51

agenda

hirnl

[Published

38

%@@

l

nSEC/Resilience — Report Penetration Test

However XSS was still prevented in this context by the usage of the content-security-policy
security header which is good. Nevertheless, HTML injection can be used to alter the
appearance of a page for other users that visit it. Therefore uploaded files can be used for
the purpose of social engineering attacks. Although it is good to be aware of this, no finding
was included because HTML extensions can be blocked in the Software Factory.

As part of XSS-like injection attacks a PDF generation function was tested under finance ->
generate invoice -> print invoice. The underlying reason is that server-side PDF generators
are sometimes vulnerable for HTML injection or SSRF attacks. By changing user input
parameters to XSS and SSRF related payloads it was checked whether the PDF generator
would handle these payloads correctly. From the tests performed there were no signs of
reflected HTML/XSS or SSRF-related callbacks.

-

Ovenbouwershoek 9

. 7328 JH Apeldoomn
th.l n k The Netherlands
wise.

Royal Fish

Department<hi>test</h1><i
mg src=x onerror=alert(1)>
Wells Mills Road
NJ 08758 Waretown
United States of America
Sales invoice 27117

Inunina data M22.07.97
Hours Hour rate Amount

Royal Fish Department - Support until July 27th, 2012
Cominiques boutique

2022-04-06 Gené Morsea 8.00 $135.00 $2,700.00

Total invoice $2,700.00
amount:

Please transfer the total invoice amount before: 29-03-2023
to our bank account by quoting invoice number 2717

No findings were added.

39

nSEC/Resilience — Report Penetration Test

5.6 —-SQL injection

With SQL injection, like XSS, input provided by a user is not checked sufficiently for malicious
content. With SQL injection this vulnerability is used to influence SQL statements used in the
web application to extract or manipulate information from the web application database.

The application and APl were explored through OWASP ZAP, which supports recognition of
OData functions, and subsequently tested for SQL injection.

No vulnerabilities were identified.

40

nSEC/Resilience — Report Penetration Test

5.7 — SSL/TLS checks

The implementation of the encryption of internet traffic between the Insights demo
application (nsecresilience.thinklab.cloud) and its users was analysed, with the following
results:

e Certificate is delivered by Sectigo, and is assigned to *.thinklab.cloud

e The certificate is trusted and has a good validity (19t May, 2023)

e The webserver supports TLS 1.2, TLS 1.1 and TLS 1.0

e The cipher suites offered by the webserver to start session encryption are mostly
adequate, but as a general rule it is advised to remove the TLS_RSA cipher suites. In
general, an up to date advice can be found in paragraph 2.3 on:

o https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-
Practices

e |t is worth noting that the cipher suite names above are in the IANA format. These
can be mapped to OpenSSL format through for example the table on
https://testssl.sh/openssl-iana.mapping.html

e Other checks indicate that the other properties of SSL/TLS are secure. For example
secure renegotiation is supported. Downgrade attack prevention
(TLS_FALLBACK_SCSV) is not active, but although activating it is an improvement,
there is not sufficient risk involved to warrant a finding to be included

TLS 1.1 and TLS 1.0 are considered to be relatively weak protocols. The advice is to disable
both. Because these findings are specific to the Insights application and not to the platform
in general no finding will be included.

41

%@@

l

nSEC/Resilience — Report Penetration Test

5.8 — Error handling

Analysis of error handling is important because in case exception- or errors are not
processed correctly, sensitive information can be exposed to an attacker, for example a stack
trace with directory names or filenames. The following conclusions as result of analysis:

5.8.1—Client errors (4xx)

e 401 Unauthorized: If a page is accessed or a request is made to which a user should
not have access, a 401 Unauthorized error is consistently returned with in the
response that the user does not have access to the requested resource. This also
applies to unauthenticated requests:

Pretty Raw Hex Render \n

HTTP/1.1 401 Unauthorized

2 Date: Wed, 22 Feb 2023 08:13:49 GNT
Content-Type: text/html

¢ Connection: close
Server: Microsoft-I11S/10.0

€ Set-Cookie: ARRAffinity=f9fSaacé €4a£9d£48555ch84856902990052dc3adShdd 18aZftad3aabeb;
Path=/;HttpOnly;Secure; Domain=n: ience-thinklab-indicium-prod.azurevebsites.net
Set-Cookie: ARRAffinitySameSite=fS9fSaatte3cleéq4arodr48555ch8485690.990052dc3adShddl8aZttadlaabeh;
Path=/;HttpOnly; SameSite=None;Secure;Domain=nsecresilience-thinklab-indicium-prod.azurevebsites.n
et
Vary: Accept-Encoding
X-XSS-Protection: 1
X-Frame-Options: SAMEORIGIN
Referrer-Policy: same-origin
X-Content-Type-Options: nosniff
Content-Security-Policy: default-src 'self'; script-src 'self' 'nonce-F8FS87E7CC';

14 Content-Length: 450

Response

16 <script nonce="FB8F98'

ount/ui/login?returnur l=hcttpss3
Fi_ui_lisc

42

%@@

I

nSEC/Resilience — Report Penetration Test

e 404 Not found: When requesting a non-existing page a standard IS 404 error is
shown. The formatting of a standard IIS error page is missing, but the text is exactly
the same. Therefore, it can still be concluded that an IIS server is running.

@ https//nsecresilience-prod.ithinkl X +

& c & nsecresilience-prod.thinklab.cloud

B ™2 B ceH W Kontakt Database index

The resource vou are looking for has been removed, had its name changed, or is temporarily unavailable.

Because these error messages do not reveal sensitive information, like verbose error
responses, the handling of 4xx errors is adequate.

5.8.2 — Server errors (5xx)

e 500 Internal Server Error: This message indicates that there is an error in your
website's code. This is preventing the website from loading correctly. Using the
Forgot Password feature, you have encountered a 500 internal server error:

Response

e Because these error messages do not reveal sensitive information, like verbose error
responses, the handling of 5xx errors is adequate.

43

nSEC/Resilience — Report Penetration Test

5.9 - Sensitive data exposure

With sensitive data exposure, information can be found which gives an attacker additional
information with respect to the application or application landscape.

As per the OData standard, metadata was found, for example for the Insights application
through the following URL:

e https://nsecresilience-prod.thinklab.cloud/indicium/iam/40/Smetadata

It is advised to hide the OData service metadata. The metadata describes the structure of
the entities exposed by the service. Attackers can use the metadata document to better
understand the structure of the entities exposed by the OData service and create more
targeted attacks based on this information.

Since the metadata for Thinkwise applications can be disabled via a setting in
appsettings.json no finding will be included.

Next to checking content of the JavaScript files and other HTTP traffic, brute force directory
scanning was performed.

In addition, some possible internal file paths had been found. This was available from the
following URL:

e https://nsecresilience-prod.thinklab.cloud/indicium/errorLog

Identified Internal Path(s)
t_work\1\s\src\Data\Indicium.Data.Shared\Connection\DbCommandExtensions.cs

\src\Indicium.Shared\ProcessFlows\ActiveProcessFlow.cs
\src\Indicium.Shared\ProcessFlow:

stemActions\SubFlowConnector.cs

\src\Indicium.Shared\ProcessFlows\ActiveProcessAction.cs

\src\Indicium\OData\ODataRouteValueTransformer.cs

\Indicium\Middleware\Authentication\AuthenticationHeadersMiddleware.cs

\Indicium\Middleware\Security

\SecurityHeadersMiddleware.cs

\Indicium\Middleware\Messages\TSFMes: re.cs

verTimingsMiddleware.cs

Further investigation revealed that this URL was only available to Administrators of the
platform. Since this is only available to Administrators, no finding was raised for this.

44

nSEC/Resilience — Report Penetration Test

Checks were also performed on Thinkwise's software factory application. These checks for
example tried to validate whether the source code of this application could be inspected.
This was indeed the case. Free .NET decompilers and code viewers such as DotPeek can be
used to view the decompiled source without any limitations; no obfuscation is currently
present within the source code:

namespace System
i
[Serializable]
public struct ConsoleKeyInfo
private char _keyChar;
private ConsoleKey _key;
private ConsoleModifiers _mods;

public ConsoleKeyInfo(char keyChar, ConsoleKey key, bool shift, bool alt, bool control)
= I
i
if (key < (ConsoleKey) @ || key > (ConsoleKey.F16 | ConsoleKey.F17))
throw new ArgumentOutOfRangeException(nameof (key), Environment,GetResourceString(“"ArgumentOutOfRange_ConsoleKey™));
this._keyChar = keyChar;
this._key = key;
this._mods = (ConsoleModifiers) @;
if (shift)
this._mods |= ConsoleModifiers.Shift;
if (alt)
this._mods |= ConsoleModifiers.Alt;
if (!control)
return;
this._mods |= ConscleModifiers.Control;
l-
public char KeyChar =»> this._keyChar;
public ConsoleKey Key => this._key;
public ConsoleModifiers Modifiers =» this._mods;
o public override bool Equals(object value) => value is ConsoleKeyInfo consoleKeyInfo & this.Equals(consolekKeyInfo);
public bool Equals(ConsoleKeyInfo obj) =» (int) obj._keyChar == (int) this._keyChar &% obj._key == this._key && obj._mods == this._mods;
public static bool operator ==(ConsoleKeyInfo a, ConsoleKeyInfo b) => a.Equals(b);

public static bool operator !=(ConsoleKeyInfo a, ConsoleKeyInfo b) =* !{a == b);

o public override int GetHashCode() => (int) ((ConsoleModifiers) this._keyChar | this._mods);

—

It is advised to obfuscate the source code for the Software Factory. This can help protect the
intellectual property of software companies or individual developers. A finding with low
severity has been raised for this.

45

nSEC/Resilience — Report Penetration Test

5.10 — Security (mis)configuration

For adequate security it is necessary that the correct configuration is chosen and
implemented for all parts. This applies to the application but also to the webserver. Several
checks were performed, whose main results are listed here.

5.10.1 — Stack information in HTTP response messages

An attacker will start a possible attack by making an overview of the application stack. The
HTTP response message is an important instrument for gathering information about the
application stack. It is considered best practice to remove as much information from the
HTTP response messages as possible.

e Server: Microsoft-115/10.0

e X-Powered-By: ASP.NET

It is advised to remove these response headers if possible. This finding is specific for the
Insights application and does not apply to the Thinkwise platform in general.

Request Response

Raw Hex Render
HTTP/1.1 200 OK
Date: Mon, 27 Feb 2023 09:44:42 GMT
Content-Type: image/png
Content-Length: 4668
on: close
Microsoft-11S/10.0
ntrol: max-age=315569:

Set-Cookie: ARRALfinity=fS
Set-Cookie: ARRAffinitySam
ttponly; SameSite=None

lt-src 'self';

dur=2
Content-Disposition: inline; filename=Ipernity.png; filename+=

UTF-8' ' Ipernity.png

Request = Response

1 HTTP/1l.l 404 Not Found

2 Date: Mon, 27 Feb 2023 10:09:34 GMT

3 Content-Type: text/html

4 Content-Length: 103

5 Connection: close

& Server: Microsoft-IIS/10.0

7 Set-Cookie: ARRAffinity=f9ffaaéée3cleéd4afgdf48555c)
2 Set-Cookie: ARRAffinitySameSite=f9ff%aacée3cleedats

9 X-Powered-By: ASP.NET

11 The resource you are looking for has been removed,

Pretty Raw Hex Render

Path=/;HttpOnly; SameSite=None; Secure;Domain=nsecre

46

nSEC/Resilience — Report Penetration Test

5.10.2 — HTTP Security Headers

Security headers are directives used by web applications to configure security defenses in
web browsers. Based on these directives, browsers can make it harder to exploit client-side
vulnerabilities such as Cross-Site Scripting or Clickjacking.

Headers that are present:

e Present headers:

e X-XSS-Protection

e CSP header

e Referrer policy

e X-Frame-Options

e X-Content-Type-Options

Missing headers:

e Strict-Transport-Security

With the Strict-Transport-Security security header, you ensure that users can only access the
Web application via the HTTPS protocol and that any future attempts to access it using HTTP
should automatically be converted to HTTPS. It is advised to always add this header.
However because this is usually an infrastructure level setting, this header will not be set
from the Thinkwise platform and no finding will therefore be incorporated.

47

nSEC/Resilience — Report Penetration Test

5.10.3 — Cookie settings

Cookies used by the applications to store important data on the user's side. It is important to
protect this data. It can be done in part by providing the correct settings to the cookies from
the server-side. On the one hand, it is good to give important cookies the so-called Secure
flag, which forces these cookies only to be sent over secure connections (HTTPS). To prevent
cookies from being vulnerable to cross-site scripting (XSS attacks), cookies can be provided
with the flag HttpOnly, which prevents a cookie from being read by an attacker. Another
best practice is the SameSite cookie attribute that helps in preventing CSRF.

The .AspNetCore.ldentity.Application is used for access control and typically security settings
should be evaluated for that cookie.

For this specific cookie, the settings that are available for cookies that will avoid cookie
values being intercepted through a man-in-the-middle attack (“secure”) and through XSS
(“httponly”) are both active.

The “Samesite” setting however is currently set to “Lax” which means that a number of CSRF
scenario’s are not blocked. It is advised to change this setting to “Strict” if possible. However
because an antiforgery cookie is also being used, which should mitigate CSRF attacks as well,
no findings are included.

[Value Domain Path Expires / Max... Size SameSite
AspNetCore Antiforgery1082RAq2jLg CfDIBHSsVbwjamRDoKadqnto-2415KYIHF2xsCINaVP2wdXKigXpWLefldsyOz3qWy... nsecresilience... | /indicium Session Strict
ApplicationGatewayAffinityCORS 30860d707537eb845de6189ee6beS65F Session 2 None

CfDJ8H5sVbwjamRDoKadgnto! 3kfmhAa9Q8dtV3TS3AHVAZYIKEKtx Iv8Tiug... / 2 v v Lax
CfDJ8H5sVbwjamRDoKadqgnto- (4BBB6)) jIG3cBGKpTLIGAF-3At5_pNzd9n3... Jindiciu Sessi v Lax
30860d707537eb845de618%eebbe565f

CfDJ8H5sVbwjamRDoKadgnto- YS5VeW2HcMoyR3MBAe658dWy:

CfDJ8H5sVbwjamRDoKadqnto-24Br2fVwkQihi-UiMx2119h6_4c_olOSrmMS

48

nSEC/Resilience — Report Penetration Test

6 — Audit results

Because software created using recent Microsoft technology is in obvious areas often secure
by default, the quality and coverage of security testing can be raised by performing further
audit like checks on the software platform.

These white box checks are proposed to be performed on location, where an
nSEC/Resilience consultant will perform the checks together with Thinkwise resources. For
the audit activities in performed in 2023 focus was placed on the most relevant attention
points as identified during a previous audit in 2020. Backend code security was investigated
using sample based code inspection with developers on processing of user input that is
processed in the backend, for example in TSQL. In addition to this a security analysis was
performed of the overall application architecture with the purpose of identifying potential
security issues or weaknesses in interfaces or application entry/exit points.

6.1 — General comments

Newer versions of the Thinkwise platform components Indicium and Frontend have been
made available recently. The older versions of these components can be considered to be
effectively end of life and have been placed out of scope for the audit.

Thinkwise currently already performs a number of security related checks as part of their
Cl/CD pipeline:

e Static analysis based on Sonarcloud and Eslint for frontend/Universal
e Open source component checks frontend/Universal: Yarn

Open source component checks for other components are performed on ad hoc basis and
are performed manually (NuGET repositories).

49

nSEC/Resilience — Report Penetration Test

6.2 —(T)SQL for business logic

The functionality of an application made with the Thinkwise platform is generated based on
what is defined in the Software Factory and the Indicium middle layer. This process also
includes generating parameterized (T)SQL statements

e Default procedures that are used for example to work with input forms on
application level

e Layout procedures that are meant to indicate which fields should be visible and
which not

e Context procedures that process tasks or generate reports

e Database triggers

e Batch procedures

e Process procedures, through which workflows are defined

(T)SQL statements can only be edited by users that have access to the database or Software
Factory. These types of access are typically not obtained by users of the end client but only
by Thinkwise or partner organizations.

Because the (T)SQL statements are generated at runtime, they can’t be checked using static
code security checkers such as sonarcube.

Based on what was discussed in relation to the (T)SQL statements, no risks were identified
because all generated statements are parameterized and there is no opportunity to change
these statements.

50

nSEC/Resilience — Report Penetration Test

6.3 — Implementation database connection (ADO.NET)

In the application landscape of an active Thinkwise application at runtime, the Indicium
middle layer has an active connection to the IAM component based on connection settings
that are set in the platform by default.

Custom User r‘j 3rd Party
Interfaces ""UH& Applications

O—Q RESTful API (ODATA) 3rd Party

Senvices

: i
Authentication 3 _/\/ Business *F° Connectivil
Authorization @ i I]EII]UI] Intelligence @ e AL =

Workilow ﬁ o : Business
8»8 Case Mgmt g | Scheduing EE§' Process Flows e

{ Thinkwise Application Tier (. NET Core)

@ Database Conneclivity (ADO.NET)

Business Logic (SQL)

I'£|_n . i Customer Customer Custamer
l-EI} Intelligent Application Manager 8 Database 1 8 Database 2 8 Database n

The configuration for any connections that need to be made to other databases are stored in
the IAM. The configurations are made in the Software Factory, which then synchronizes to
the IAM.

The passwords for the connections were also stored without encryption for the Insights
application. However for the Thinkwise platform in general it is possible to store these
passwords encrypted.

51

nSEC/Resilience — Report Penetration Test

Another observation was related to the way the initial credentials for the database pool are
stored. Also due to the currently available documentation
(docs.thinkwisesoftware.com/docs/deployment/indicium) these credentials are often stored
hardcoded in appsettings.json. More secure alternatives are available; therefore no finding
will be included.

6.4 — Preview components

Based on a discussion of the application landscape, a potential attack vector was found in
the availability of file preview functionality in the platform. For example, HTML files can be
viewed as PDF, and Excel files can be viewed to HTML files.

The preview components make use of the gembox library (gemboxsoftware.com). Thinkwise
has obtained a license to make use of gembox as a part of the Thinkwise platform.

Based on the audit discussions, a number of additional tests have been defined for the
penetration test. No findings have been done for the preview functionality itself. The
gembox software does not seem to contain any known vulnerabilities or default
configuration errors.

An observation that was done is the fact that the gembox licence key is included hardcoded
in the Thinkwise platform files. However this key is not usable from other environments
because it is digitally signed.

52

nSEC/Resilience — Report Penetration Test

7 — Conclusion and recommendations

During the initial penetration test on the example application of the Thinkwise platform no
findings of high or critical severity were done. Testers did not succeed in obtaining significant
amounts of sensitive data nor take control of the server. This is a good result.

The audit also did not produce findings that required immediate actions.

After receiving feedback from Thinkwise on the initial findings, and retesting of fixed
findings, only a small number of low severity findings remained. These findings of low
severity can be seen as findings for which there is no direct urgency to address them, but
implementing solutions for these findings will further raise the bar for potential attackers
and establish a baseline that would give customers or external auditors increased
confidence.

A findings overview with the vulnerabilities ordered by severity can be found on the next
page.

53

Description Category Severity
In some cases sessions remain active after long Authentication Low
periods of inactivity & Session

Management
No brute force protection on the MFA token for = Authentication Low
the password reset function & Session

Management
Runtime components of the Thinkwise platform Sensitive Data Low
can be decompiled into readable source code Exposure

Advice

Enforce that the mechanism to automatically end sessions
based on user inactivity works in all situations

Add functionality to block a user or a code after 5 incorrect
attempts within a short timeframe

It is advised to obfuscate/hide the source code to protect
intellectual property

Appendix A — Results DNS reconnaissance

Subdomain

community.thinkwisesoftware.com
docs.thinkwisesoftware.com
office.thinkwisesoftware.com
updates.thinkwisesoftware.com
ssh.thinkwisesoftware.com
universal.thinkwisesoftware.com
msoid.thinkwisesoftware.com
lyncdiscover.thinkwisesoftware.com
www.thinkwisesoftware.com
metrics.thinkwisesoftware.com
staging.thinkwisesoftware.com
mail.thinkwisesoftware.com
offers.thinkwisesoftware.com
enterpriseregistration.thinkwisesoftware.com
registry.thinkwisesoftware.com
autodiscover.thinkwisesoftware.com
kibo.thinkwisesoftware.com
vpn.thinkwisesoftware.com
blog.thinkwisesoftware.com
sip.thinkwisesoftware.com
enterpriseenrollment.thinkwisesoftware.com
insights.thinkwisesoftware.com
filecap.thinkwisesoftware.com
thinklab.thinkwisesoftware.com
prtg.thinkwisesoftware.com
tsf-quarantaine.thinkwisesoftware.com
webmail.thinkwisesoftware.com

licensing.thinkwisesoftware.com

IP address
52.222.139.88
144.178.66.249
144.178.66.249
144.178.66.249
185.162.30.162
144.178.66.244
40.126.32.68
52.112.196.12
199.60.103.28
144.178.66.249
199.60.103.228
144.178.66.243
199.60.103.28
20.190.137.40
195.154.68.114
144.178.66.243
144.178.66.243
144.178.66.242
199.60.103.28
52.112.192.11
20.91.147.72
144.178.66.244
144.178.66.245
185.149.37.40
144.178.66.244
144.178.66.242
95.97.179.163
144.178.66.249

