

Report External Penetration Test

Thinkwise Platform

Version 1.2, May 8th 2023

nSEC/Resilience – Report Penetration Test

2

Date Version Comments

27/02/2023 0.1 Initial draft for internal review

22/03/2023 1.0 Final version for client

03/05/2023 1.1 Updated version after retest

08/05/2023 1.2 Updated after customer feedback

nSEC/Resilience – Report Penetration Test

3

Table of Contents

1 – Management Summary 5

2 – Scope and context 7

3 – Test approach and process evaluation 8

4 – Reconnaissance phase 9

4.1 – Public information sources 9

4.2 – Vulnerability scan and manual reconnaissance 10

4.3 – Network level scan 11

5 – Penetration Test: application level 12

5. 1 – Authentication and Session management 12

5.1.1 – Login mechanism 12

5.1.2 – Password change mechanism 16

5.1.3 – Session management 23

5. 2 – Broken Access Control 25

5.2.1 - Access without authentication 25

5.2.2 - Access to functions with higher privilege levels 28

5.3 – Unrestricted File Upload 32

5.4 – Directory traversal and Remote file inclusion 36

5.5 – Cross-site scripting (XSS) 37

5.6 – SQL injection 40

5.7 – SSL/TLS checks 41

5.8 – Error handling 42

5.8.1 – Client errors (4xx) 42

5.8.2 – Server errors (5xx) 43

5.9 – Sensitive data exposure 44

5.10 – Security (mis)configuration 46

5.10.1 – Stack information in HTTP response messages 46

5.10.2 – HTTP Security Headers 47

5.10.3 – Cookie settings 48

6 – Audit results 49

6.1 – General comments 49

6.2 – (T)SQL for business logic 50

6.3 – Implementation database connection (ADO.NET) 51

6.4 – Preview components 52

nSEC/Resilience – Report Penetration Test

4

7 – Conclusion and recommendations 53

Appendix A – Results DNS reconnaissance 55

nSEC/Resilience – Report Penetration Test

5

1 – Management Summary

Thinkwise B.V. (from hereon: Thinkwise) is creator and owner of the Thinkwise Low Code

software platform, which can be used to build robust software applications for clients in a

short period of time, making use of the functionality and technology that is part of the

platform.

To be able to prove to customers that the Thinkwise Low Code platform is sufficiently

secure, Thinkwise has mandated nSEC/Resilience to perform a penetration test on the

platform. This penetration test was expanded with a number of audit-like checks.

During the initial penetration test on the example application of the Thinkwise platform no

findings of high or critical severity were done. Testers did not succeed in obtaining significant

amounts of sensitive data nor take control of the server. This is a good result.

The audit also did not produce findings that required immediate actions.

After receiving feedback from Thinkwise on the initial findings, and retesting of fixed

findings, only a small number of low severity findings remained. These findings of low

severity can be seen as findings for which there is no direct urgency to address them, but

implementing solutions for these findings will further raise the bar for potential attackers

and establish a baseline that would give customers or external auditors increased

confidence.

nSEC/Resilience – Report Penetration Test

6

Chapter 6 of the report provides a complete overview of all the findings. Below is an

overview giving the results, per category (as identified by OWASP).

Topic/area Test result

Network level Good – no vulnerabilities found

Auth & session management Findings –2x low severity

Broken Access Control Good – no vulnerabilities found

Unrestricted File Upload Good – no vulnerabilities found

Directory traversal / File inclusion Good – no vulnerabilities found

Cross-site scripting (XSS) Good – no vulnerabilities found

SSL/TLS Good – no vulnerabilities found

SQL injection Good – no vulnerabilities found

Error handling Good – no vulnerabilities found

Sensitive data exposure Finding – 1x low severity

Security (mis)configuration Good – no vulnerabilities found

Audit Good – no vulnerabilities found

nSEC/Resilience – Report Penetration Test

7

2 – Scope and context

Thinkwise B.V. (from hereon: Thinkwise) is creator and owner of the Thinkwise Low Code

software platform, which can be used to build robust software applications for clients in a

short period of time, making use of the functionality and technology that is part of the

platform.

To be able to prove to customers that the Thinkwise Low Code platform is sufficiently

secure, Thinkwise has mandated nSEC/Resilience to perform a penetration test on an

example application built using the platform.

Due to the nature of the application / platform, nSEC/Resilience has advised to also consider

adding audit elements to the security evaluation on the platform. These audit elements will

expand the coverage of the test activities to include more elements that are difficult to cover

from an external dynamic penetration test. The results of this white box audit are also

included in this report.

The attack surface (areas of the information system that an attacker or security evaluator

can choose to initiate an attack) for the penetration test was defined as, and limited to:

• https://nsecresilience.thinklab.cloud/ (General)

• https://nsecresilience-prod.thinklab.cloud/universal/ (User interface)

• https://nsecresilience-prod.thinklab.cloud/indicium/iam/insights (Application tier)

It was explicitly allowed as part of the penetration test to investigate and exploit

vulnerabilities in the assets in scope, as long as direct attack surface was limited to the

definition above.

During the penetration test forensic research, code reviews and exhaustive DDOS testing

were out of scope.

nSEC/Resilience – Report Penetration Test

8

3 – Test approach and process evaluation

For the penetration test, 40 hours of testing was allocated. The testers received three test

accounts for the Insights application, each with different access rights, so that proper tests

for access control could take place. As such, the penetration test was executed grey-box.

Methodologically, the penetration test was performed in line with the PTES (infrastructure

level) and OWASP WSTG (application level).

Reconnaissance for the penetration test was performed with industry-standard tooling

(scanners and scripts) and by manually searching through public available sources. At

network level also open ports and active services were investigated.

During the execution- and exploitation phase various tools were used. However, majority of

the checks were performed manually, where internet traffic was investigated and

manipulated with proxy tooling.

For the audit elements two resource days were allocated. The activities were for the largest

part performed on location in Apeldoorn by two resources working in parallel.

No issues occurred during test execution.

After initial testing, Thinkwise gave feedback on the communicated findings. Some findings

were not regarded as risk (or regarded as working as designed) and one finding was fixed

and retested. This report describes the results after retest.

nSEC/Resilience – Report Penetration Test

9

4 – Reconnaissance phase

Goal of the reconnaissance phase is to collect data from public sources and non-intrusive

scans. Results from the reconnaissance phase give valuable information to be used in the

execution phase.

4.1 – Public information sources

The following results are gathered from the open source intelligence reconnaissance phase

(only the most relevant results are mentioned):

● See the full list of subdomain enumeration in Appendix A – DNS reconnaissance

● The identified domains have been checked using a tool that automatically makes

screenprints based on a list of domains. No relevant results followed from these

checks

● The IP addresses that corresponded to the identified subdomains were added to the

scope for the external network level checks

● Search engine reconnaissance showed that job vacancy information contains

technology information:

nSEC/Resilience – Report Penetration Test

10

• Search for externally exposed software repositories did not yield results

• No other results were obtained from open source reconnaissance

4.2 – Vulnerability scan and manual reconnaissance

In addition to the collection of data from public sources, several vulnerability scans were

performed with various tools, including the industry standard tool NetSparker and OWASP

ZAP. Additionally, manual reconnaissance was performed to identify the application stack

and attack vectors for the execution phase. The most relevant results:

• Manual reconnaissance reports that the target application is built on a Microsoft

stack (IIS/10.0) with ASP.net

• Brute force directory and file scanners produced only a few results, none of which

were relevant for the further investigation

• Exploration of the workflow shows various functionality that can be explored further,

in particular upload functionality and preview functionality

• Many of the notifications from the scans were also found with manual checks/tests

and are described in the paragraphs of Chapter 5

nSEC/Resilience – Report Penetration Test

11

4.3 – Network level scan

In addition to the analysis of public sources, various scans have been performed on network

level. These scans were performed using at least the industry standard tools Nessus and

Nmap.

The main IP address (20.170.5.72) was scanned on network level, with the following results:

Port Protocol Status Service Details

80 TCP Open HTTP Azure application gateway

443 TCP Open HTTPS Azure application gateway

Next to the regular TCP network level scans, various firewall evasion techniques were

deployed and UDP scanning was executed. From these checks, no findings were done on

network level for the main IP address in scope.

nSEC/Resilience – Report Penetration Test

12

5 – Penetration Test: application level

Following the outcomes of the reconnaissance phase, a number of aspects are analyzed in

more detail. The executed actions and analyses are discussed in the following paragraphs,

classified according the OWASP top 10.

5. 1 – Authentication and Session management

5.1.1 – Login mechanism

Upon login to the insights application (user interface) via https://nsecresilience-

prod.thinklab.cloud/universal/, by default a username and password was required before

any other interaction with the application was possible:

nSEC/Resilience – Report Penetration Test

13

When either the username or password is incorrect, a neutral error message is returned.

This prevents the login mechanism from being used for user enumeration which is good. On

the login screen, a meta server URL and an application and platform could be configured.

It was attempted to change the meta server URL to a server in control of the testers, to see if

credentials could be intercepted in this way. Doing so it was noticed that one request was

intercepted by the server in our control:

The source IP address however was an attacker IP address and not an IP address controlled

by Thinkwise (meaning that no SSRF attacks were possible).

When submitting the login credentials a POST request is made to

/indicium/account/apio/login with the username and password in the request body:

nSEC/Resilience – Report Penetration Test

14

A 204 “No Content” response is then returned together with an

.AspNetCore.Identity.Application cookie, which acts as session cookie for the application.

When successfully authenticated, this cookie is used for authorizing further requests made

in the application.

An alternative login function for indicium local login was found via https://nsecresilience-
prod.thinklab.cloud/indicium/account/ui/localLogin:

Similar to the previous login, upon successful authentication a

.AspNetCore.Identity.Application is set.

nSEC/Resilience – Report Penetration Test

15

This cookie holds the same authorization as the cookie that is returned by the user interface

login however upon successful login the user is not immediately redirected to the user

interface.

Using a higher privileged admin account with access to IAM, further login options could be

configured, directly affecting the login mechanism.

In the login mechanisms as configured, no vulnerabilities were identified.

nSEC/Resilience – Report Penetration Test

16

5.1.2 – Password change mechanism

For the Insight application there are possibilities to change user passwords:

• By regular users, for their own accounts (if enabled in the IAM)

• By a higher privileged user

The highly privileged user is responsible for setting appropriate security configurations such

as password strength and expiration policy. Settings such as password expiry are not set by

default.

nSEC/Resilience – Report Penetration Test

17

Password change for IAM user (high privilege):

The IAM user (high privilege) is able to change passwords on behalf of users via the “update

password” function. The password policy can be configured via IAM.

nSEC/Resilience – Report Penetration Test

18

Password change for Insights user (low privileged):

If enabled by the IAM user, a lower privileged insights application user is able to change their

own password. In this case the current password is required, which is good:

nSEC/Resilience – Report Penetration Test

19

In the backend this current password is also passed on and a valid session cookie is required

for the request to be successful:

It is in general recommended to enforce password policies by default instead of making it

optional for the high privileged user to configure. This will help push the use of stronger

passwords for applications and users making use of the Thinkwise software. However

because the password policy can be defined by any organization through IAM no finding is

included.

nSEC/Resilience – Report Penetration Test

20

Password reset (unauthenticated)

The Insights application also contained a password reset mechanism in the form of a

“password forgot” function for unauthenticated users (if password recovery is allowed by

the administrator).

In this case a username must be entered, after which an email with a unique token is sent

via e-mail that can be used to reset the password.

This function is not sensitive to username enumeration; the same response is given

regardless of whether the input was correct or not.

nSEC/Resilience – Report Penetration Test

21

After an existing username is entered, the user should receive an email with a validation

token that has to be entered together with a new password:

When an invalid or no validation token is entered, an error is returned indicating that the

token is incorrect:

nSEC/Resilience – Report Penetration Test

22

When checking the received e-mail it is observed that the validation token is a 6-digit code,

for example:

This code is tested to have an expiration time of under 30 minutes, which makes brute force

attacks on this code less likely. However there is no brute force attack detection present on

the MFA function. An attacker seems to be able to try many combinations. It is advised to

add more protection on the backend by for example temporarily blocking a user when more

than 5 invalid MFA codes are submitted in a short timeframe. A finding of severity low was

added for this.

nSEC/Resilience – Report Penetration Test

23

5.1.3 – Session management

Checks were done for session management such as checks around validity, lifetime and data

storage.

It was found that sessions do not end within a specific period of inactivity or after browser

close. In some cases sessions remain active for longer periods due to specific requests

generated from the GUI keeping the session alive. The session is ended on browser close

(unless the user has selected the “remember me” option).

Generally it is desired from the perspective of security to by default have a mechanism for

automatic session timeout after a short period of inactivity (a few hours maximum) that

works in all situations, so that the user is forced to reauthenticate after not using an

application for some time.

A finding of severity low was added for this observation, with the recommendation to

enforce that a session timeout is implemented by default and is active in all scenario’s.

It was also found that after a user explicitly logs out via the logout function, requests made

with the old session cookie (.AspNetCore.Identity.Application) would still return a valid

response, some time after the user had logged out.

nSEC/Resilience – Report Penetration Test

24

This means in the backend the session cookie is not immediately invalidated after explicit

logout and can still return data that requires authentication. Because the sessions are short-

lived and implementation of a fix would be very difficult (and potentially in conflict with

leading RFCs) no finding will be included.

Local browser storage was found to be mostly empty, not containing any sensitive or

interesting data:

No further findings were done with regards to session management.

nSEC/Resilience – Report Penetration Test

25

5. 2 – Broken Access Control

With broken access control, an attacker exploits references to objects or functions to access

resources that the attacker is not authorized for. Often this only can be exploited if the

authentication management/session management is inadequate. Examples can be

references to files with predictable file names, or manipulating function parameters such as

an organization ID.

For the Insights example application access control was checked from two perspectives: an

attacker without any access to the application, and an attacker with a form of access trying

to access functions/data corresponding to a higher access level.

5.2.1 - Access without authentication

Necessary checks where done to understand if an attacker can obtain unauthorized access

to functions and/or data that they should not have access to.

The platform is set up to require a valid .AspNetCore.Identity.Application cookie in order to

retrieve information.

When this cookie is not present or invalid in a request, a “401 Unauthorized” error is

returned as seen on the screenshot below:

nSEC/Resilience – Report Penetration Test

26

This behavior was found to be consistently present; no exceptions were found.

Since the platform makes use of Microsoft’s OData standard for the API layer it was also

tested if the OData metadata file could be retrieved without authentication. This is relevant

because a publicly retrievable metadata file can expose application structure and

parameters that could help an attacker find vulnerabilities.

The OData metadata file could however not be retrieved without authentication. Attempts

to do so returned a “401 Unauthorized” response, which is good:

The same result followed for the OpenAPI documentation which can be used to view

available API calls.

nSEC/Resilience – Report Penetration Test

27

No findings were done for access without authentication.

nSEC/Resilience – Report Penetration Test

28

5.2.2 - Access to functions with higher privilege levels

In this context, the vertical privilege escalation scenarios were investigated. Checks were

performed to ensure that access control between different privileges is implemented

correctly and consistently.

Various functions/endpoints for the application in-scope were tested across the different

roles provided for the applications. As one user has access to the IAM application while the

other has not, these could be tested for vertical privilege escalation.

As one of the tests, it was tried to edit the details of another user as low privileged user, by

intercepting the request from the IAM to do so and replacing the session cookie:

As seen in the screenshot above, the other user does not seem to exist in the context of the

low privileged user and a 404 not found error is returned. A 404 error is also returned when

a GET request is made to retrieve another user.

Administrators in the IAM application have the ability to change passwords on behalf of a

user. It was attempted to intercept the request to change a user’s password and change the

session cookie to that of a low privileged user (that does not have access to this function) to

see if the password of another user could be updated this way. As seen on the screenshot

below, updating the password via this function does not require the current password:

nSEC/Resilience – Report Penetration Test

29

After replacing the session cookie and sending the request however, a 404 “not found” error

is returned, indicating this vertical privilege escalation attack did not succeed which is good.

nSEC/Resilience – Report Penetration Test

30

Trying to access database event logs as low privileged user, a “401 Unauthorized” error is

returned and the user is redirected to login screen:

Using the OData metadata file, further checks were done to see if the low privileged user

(demo_nl) could access certain service document files that may reveal sensitive information.

For example the IAM admin user can access a service document with sensitive data such as

password hashes via:

• nsecresilience-prod.thinklab.cloud/indicium/iam/iam/usr

nSEC/Resilience – Report Penetration Test

31

When trying to access this as the low privileged user, a 404 “not found” error is returned.

The low privileged user could only retrieve his/her own data, not including any password

hashes:

No findings were done with regards to vertical privilege escalation.

nSEC/Resilience – Report Penetration Test

32

5.3 – Unrestricted File Upload

With unrestricted file upload, an attacker uses the functionality to upload files. Instead of

valid files other vulnerable files are uploaded. For example, a remote shell can be uploaded

so that control can be taken on the server.

For file upload checks focus was placed on the INSIGHTS application because the upload

functions that were present there are also available to normal end users (unlike the upload

functions in the IAM application, which only administrators can access).

First, testers identified the unique upload features present in the INSIGHTS application.

In the Insight application photos can be uploaded of an individual. Several tests have been

performed on this upload function. The first test was to upload files with potentially

dangerous file extensions, such as .exe, .html, etc.

When a file with a disallowed file extension was selected in the UI, the following error was

displayed:

It was not possible from the frontend/UI to select a file with an extension other than image

file extensions, like jpeg, jpg, png, etc.

nSEC/Resilience – Report Penetration Test

33

However, it was possible to intercept the PATCH request (that makes up the first step in the

upload process) and change the file extension from (for example) .png to .html:

After this, the second upload request (a POST message) was also intercepted. The Content-

Type was changed to text/html and the request was sent:

nSEC/Resilience – Report Penetration Test

34

After these changes were applied, the request was sent to the backend server and the .html

file was successfully uploaded. This file was then temporarily available through a URL that

could be accessed, for example:

- https://nsecresilience-

prod.thinklab.cloud/indicium/iam/40/staged_employee(d7a460f3-301c-43e5-8253-

6f350cc6c4f1)/INSIGHTS.download_photo(file_id=null)?t=1677244462911

Once upload has been completed and the uploaded file is stored on the backend server it

cannot be opened in the context of the web application itself for example as part of a

preview function. The file is immediately downloaded locally and can then be opened in a

browser of choice. This mitigates most of the direct risk; if files with dangerous extensions

could be made to be rendered directly by the webserver, this could lead to code execution.

Checks in file upload functions require validations for file extensions on both the frontend

and backend. On the Insights application this was only the case on the frontend. However

for Thinkwise in general allowed file extensions can be configured in the Software Factory ni

the ‘extention whitelist’ setting that can be set for each ‘file storage location’. Because of

this possibility no finding will be included.

In addition to tests on validations of file extensions, tests were also performed with the goal

of establishing whether there is an active virus scanner active on the file upload

functionalities. For this purpose a so-called EICAR file was used. The EICAR Standard Anti-

Malware Test file is a special 'dummy' file which is used to test the correct operation of

malware detection scanners. When an EICAR test file is placed on a file system, any virus

scanner that is active on that file system will detect it exactly as if it were a malicious

program. Alternatively, some virus scanners can check file contents as part of the upload

function itself, and block files before they are placed on the operating system.

nSEC/Resilience – Report Penetration Test

35

In the case of the Insights application the EICAR file was uploaded without any restrictions:

Since the EICAR file was not blocked by the webserver it did not seem that any virus scanner

is active on the location where these files are saved. Since the file after saving the data, with

the HR employees for example, is immediately downloaded locally into the client's browser,

this can bring a risk with it. In general the advice is to make sure that there is a virus scanner

active on the file system to which files are uploaded. Because the implementation of security

measures in this form are the responsibility of partner organizations or end users, no finding

will be included for this.

nSEC/Resilience – Report Penetration Test

36

5.4 – Directory traversal and Remote file inclusion

With directory traversal it is possible to change the URL of the web application in such a way

that files in other directories (outside the location of the files of the web application) can be

accessed. With remote file inclusion same thing happens but this is done through including

remote files through file parameters in functions.

Moderate manual testing was done on regular directory traversal based on windows

directories and files, respectively in both regular format as encoded format. As automated

tool, next to NetSparker and OWASP ZAP also dotdotpwn was used. No vulnerabilities were

identified. For file inclusion no attack vectors were identified.

nSEC/Resilience – Report Penetration Test

37

5.5 – Cross-site scripting (XSS)

Cross-site scripting is a technique in which an attacker makes use of lack of sanitation of user

input. The attacker tries to leverage such as vulnerability by identifying a place where any

malicious input will be presented back to a user. The attacker then inputs malicious code, for

example to steal cookies and send them to the attacker, and waits for another user to trigger

the scripts. That way, the attacker can collect information or even control complete user

browser sessions.

During the penetration test various forms and functions with user input were tested for

cross-site scripting. Automated scans were used to test for reflected cross-site scripting

extensively. Stored XSS was investigated mainly using manual testing.

It was found that generally html/javascript injection attempts are blocked by consistently by

the application by applying entity encoding.

For example, using the admin IAM account, XSS payloads were injected inside the username

of demo_nl user, as the name field is referenced often within the application.

The entity encoding was consistent across various reflected input fields:

nSEC/Resilience – Report Penetration Test

38

However some exceptions were found, mainly by making use of the earlier found

unrestricted file upload vulnerabilities across file upload functions.

For example in the insights application -> projects -> documents section, it was possible to

upload any file, which could hen be previewed inside the application. By uploading a .html

file it was possible to get HTML code reflected inside the application:

nSEC/Resilience – Report Penetration Test

39

However XSS was still prevented in this context by the usage of the content-security-policy

security header which is good. Nevertheless, HTML injection can be used to alter the

appearance of a page for other users that visit it. Therefore uploaded files can be used for

the purpose of social engineering attacks. Although it is good to be aware of this, no finding

was included because HTML extensions can be blocked in the Software Factory.

As part of XSS-like injection attacks a PDF generation function was tested under finance ->

generate invoice -> print invoice. The underlying reason is that server-side PDF generators

are sometimes vulnerable for HTML injection or SSRF attacks. By changing user input

parameters to XSS and SSRF related payloads it was checked whether the PDF generator

would handle these payloads correctly. From the tests performed there were no signs of

reflected HTML/XSS or SSRF-related callbacks.

No findings were added.

nSEC/Resilience – Report Penetration Test

40

5.6 – SQL injection

With SQL injection, like XSS, input provided by a user is not checked sufficiently for malicious

content. With SQL injection this vulnerability is used to influence SQL statements used in the

web application to extract or manipulate information from the web application database.

The application and API were explored through OWASP ZAP, which supports recognition of

OData functions, and subsequently tested for SQL injection.

No vulnerabilities were identified.

nSEC/Resilience – Report Penetration Test

41

5.7 – SSL/TLS checks

The implementation of the encryption of internet traffic between the Insights demo

application (nsecresilience.thinklab.cloud) and its users was analysed, with the following

results:

• Certificate is delivered by Sectigo, and is assigned to *.thinklab.cloud

• The certificate is trusted and has a good validity (19th May, 2023)

• The webserver supports TLS 1.2, TLS 1.1 and TLS 1.0

• The cipher suites offered by the webserver to start session encryption are mostly

adequate, but as a general rule it is advised to remove the TLS_RSA cipher suites. In

general, an up to date advice can be found in paragraph 2.3 on:

o https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-

Practices

• It is worth noting that the cipher suite names above are in the IANA format. These

can be mapped to OpenSSL format through for example the table on

https://testssl.sh/openssl-iana.mapping.html

• Other checks indicate that the other properties of SSL/TLS are secure. For example

secure renegotiation is supported. Downgrade attack prevention

(TLS_FALLBACK_SCSV) is not active, but although activating it is an improvement,

there is not sufficient risk involved to warrant a finding to be included

TLS 1.1 and TLS 1.0 are considered to be relatively weak protocols. The advice is to disable

both. Because these findings are specific to the Insights application and not to the platform

in general no finding will be included.

nSEC/Resilience – Report Penetration Test

42

5.8 – Error handling

Analysis of error handling is important because in case exception- or errors are not

processed correctly, sensitive information can be exposed to an attacker, for example a stack

trace with directory names or filenames. The following conclusions as result of analysis:

5.8.1 – Client errors (4xx)

• 401 Unauthorized: If a page is accessed or a request is made to which a user should

not have access, a 401 Unauthorized error is consistently returned with in the

response that the user does not have access to the requested resource. This also

applies to unauthenticated requests:

nSEC/Resilience – Report Penetration Test

43

• 404 Not found: When requesting a non-existing page a standard IIS 404 error is

shown. The formatting of a standard IIS error page is missing, but the text is exactly

the same. Therefore, it can still be concluded that an IIS server is running.

Because these error messages do not reveal sensitive information, like verbose error

responses, the handling of 4xx errors is adequate.

5.8.2 – Server errors (5xx)

• 500 Internal Server Error: This message indicates that there is an error in your

website's code. This is preventing the website from loading correctly. Using the

Forgot Password feature, you have encountered a 500 internal server error:

• Because these error messages do not reveal sensitive information, like verbose error

responses, the handling of 5xx errors is adequate.

nSEC/Resilience – Report Penetration Test

44

5.9 – Sensitive data exposure

With sensitive data exposure, information can be found which gives an attacker additional

information with respect to the application or application landscape.

As per the OData standard, metadata was found, for example for the Insights application

through the following URL:

• https://nsecresilience-prod.thinklab.cloud/indicium/iam/40/$metadata

It is advised to hide the OData service metadata. The metadata describes the structure of

the entities exposed by the service. Attackers can use the metadata document to better

understand the structure of the entities exposed by the OData service and create more

targeted attacks based on this information.

Since the metadata for Thinkwise applications can be disabled via a setting in

appsettings.json no finding will be included.

Next to checking content of the JavaScript files and other HTTP traffic, brute force directory

scanning was performed.

In addition, some possible internal file paths had been found. This was available from the

following URL:

• https://nsecresilience-prod.thinklab.cloud/indicium/errorLog

Further investigation revealed that this URL was only available to Administrators of the

platform. Since this is only available to Administrators, no finding was raised for this.

nSEC/Resilience – Report Penetration Test

45

Checks were also performed on Thinkwise's software factory application. These checks for

example tried to validate whether the source code of this application could be inspected.

This was indeed the case. Free .NET decompilers and code viewers such as DotPeek can be

used to view the decompiled source without any limitations; no obfuscation is currently

present within the source code:

It is advised to obfuscate the source code for the Software Factory. This can help protect the

intellectual property of software companies or individual developers. A finding with low

severity has been raised for this.

nSEC/Resilience – Report Penetration Test

46

5.10 – Security (mis)configuration

For adequate security it is necessary that the correct configuration is chosen and

implemented for all parts. This applies to the application but also to the webserver. Several

checks were performed, whose main results are listed here.

5.10.1 – Stack information in HTTP response messages

An attacker will start a possible attack by making an overview of the application stack. The

HTTP response message is an important instrument for gathering information about the

application stack. It is considered best practice to remove as much information from the

HTTP response messages as possible.

• Server: Microsoft-IIS/10.0

• X-Powered-By: ASP.NET

It is advised to remove these response headers if possible. This finding is specific for the

Insights application and does not apply to the Thinkwise platform in general.

nSEC/Resilience – Report Penetration Test

47

5.10.2 – HTTP Security Headers

Security headers are directives used by web applications to configure security defenses in

web browsers. Based on these directives, browsers can make it harder to exploit client-side

vulnerabilities such as Cross-Site Scripting or Clickjacking.

Headers that are present:

• Present headers:

• X-XSS-Protection

• CSP header

• Referrer policy

• X-Frame-Options

• X-Content-Type-Options

Missing headers:

• Strict-Transport-Security

With the Strict-Transport-Security security header, you ensure that users can only access the

Web application via the HTTPS protocol and that any future attempts to access it using HTTP

should automatically be converted to HTTPS. It is advised to always add this header.

However because this is usually an infrastructure level setting, this header will not be set

from the Thinkwise platform and no finding will therefore be incorporated.

nSEC/Resilience – Report Penetration Test

48

5.10.3 – Cookie settings

Cookies used by the applications to store important data on the user's side. It is important to

protect this data. It can be done in part by providing the correct settings to the cookies from

the server-side. On the one hand, it is good to give important cookies the so-called Secure

flag, which forces these cookies only to be sent over secure connections (HTTPS). To prevent

cookies from being vulnerable to cross-site scripting (XSS attacks), cookies can be provided

with the flag HttpOnly, which prevents a cookie from being read by an attacker. Another

best practice is the SameSite cookie attribute that helps in preventing CSRF.

The .AspNetCore.Identity.Application is used for access control and typically security settings

should be evaluated for that cookie.

For this specific cookie, the settings that are available for cookies that will avoid cookie

values being intercepted through a man-in-the-middle attack (“secure”) and through XSS

(“httponly”) are both active.

The “Samesite” setting however is currently set to “Lax” which means that a number of CSRF

scenario’s are not blocked. It is advised to change this setting to “Strict” if possible. However

because an antiforgery cookie is also being used, which should mitigate CSRF attacks as well,

no findings are included.

nSEC/Resilience – Report Penetration Test

49

6 – Audit results

Because software created using recent Microsoft technology is in obvious areas often secure

by default, the quality and coverage of security testing can be raised by performing further

audit like checks on the software platform.

These white box checks are proposed to be performed on location, where an

nSEC/Resilience consultant will perform the checks together with Thinkwise resources. For

the audit activities in performed in 2023 focus was placed on the most relevant attention

points as identified during a previous audit in 2020. Backend code security was investigated

using sample based code inspection with developers on processing of user input that is

processed in the backend, for example in TSQL. In addition to this a security analysis was

performed of the overall application architecture with the purpose of identifying potential

security issues or weaknesses in interfaces or application entry/exit points.

6.1 – General comments

Newer versions of the Thinkwise platform components Indicium and Frontend have been

made available recently. The older versions of these components can be considered to be

effectively end of life and have been placed out of scope for the audit.

Thinkwise currently already performs a number of security related checks as part of their

CI/CD pipeline:

• Static analysis based on Sonarcloud and Eslint for frontend/Universal

• Open source component checks frontend/Universal: Yarn

Open source component checks for other components are performed on ad hoc basis and

are performed manually (NuGET repositories).

nSEC/Resilience – Report Penetration Test

50

6.2 – (T)SQL for business logic

The functionality of an application made with the Thinkwise platform is generated based on

what is defined in the Software Factory and the Indicium middle layer. This process also

includes generating parameterized (T)SQL statements

• Default procedures that are used for example to work with input forms on

application level

• Layout procedures that are meant to indicate which fields should be visible and

which not

• Context procedures that process tasks or generate reports

• Database triggers

• Batch procedures

• Process procedures, through which workflows are defined

(T)SQL statements can only be edited by users that have access to the database or Software

Factory. These types of access are typically not obtained by users of the end client but only

by Thinkwise or partner organizations.

Because the (T)SQL statements are generated at runtime, they can’t be checked using static

code security checkers such as sonarcube.

Based on what was discussed in relation to the (T)SQL statements, no risks were identified

because all generated statements are parameterized and there is no opportunity to change

these statements.

nSEC/Resilience – Report Penetration Test

51

6.3 – Implementation database connection (ADO.NET)

In the application landscape of an active Thinkwise application at runtime, the Indicium

middle layer has an active connection to the IAM component based on connection settings

that are set in the platform by default.

The configuration for any connections that need to be made to other databases are stored in

the IAM. The configurations are made in the Software Factory, which then synchronizes to

the IAM.

The passwords for the connections were also stored without encryption for the Insights

application. However for the Thinkwise platform in general it is possible to store these

passwords encrypted.

nSEC/Resilience – Report Penetration Test

52

Another observation was related to the way the initial credentials for the database pool are

stored. Also due to the currently available documentation

(docs.thinkwisesoftware.com/docs/deployment/indicium) these credentials are often stored

hardcoded in appsettings.json. More secure alternatives are available; therefore no finding

will be included.

6.4 – Preview components

Based on a discussion of the application landscape, a potential attack vector was found in

the availability of file preview functionality in the platform. For example, HTML files can be

viewed as PDF, and Excel files can be viewed to HTML files.

The preview components make use of the gembox library (gemboxsoftware.com). Thinkwise

has obtained a license to make use of gembox as a part of the Thinkwise platform.

Based on the audit discussions, a number of additional tests have been defined for the

penetration test. No findings have been done for the preview functionality itself. The

gembox software does not seem to contain any known vulnerabilities or default

configuration errors.

An observation that was done is the fact that the gembox licence key is included hardcoded

in the Thinkwise platform files. However this key is not usable from other environments

because it is digitally signed.

nSEC/Resilience – Report Penetration Test

53

7 – Conclusion and recommendations

During the initial penetration test on the example application of the Thinkwise platform no

findings of high or critical severity were done. Testers did not succeed in obtaining significant

amounts of sensitive data nor take control of the server. This is a good result.

The audit also did not produce findings that required immediate actions.

After receiving feedback from Thinkwise on the initial findings, and retesting of fixed

findings, only a small number of low severity findings remained. These findings of low

severity can be seen as findings for which there is no direct urgency to address them, but

implementing solutions for these findings will further raise the bar for potential attackers

and establish a baseline that would give customers or external auditors increased

confidence.

A findings overview with the vulnerabilities ordered by severity can be found on the next

page.

Description Category Severity Advice

In some cases sessions remain active after long
periods of inactivity

Authentication
& Session
Management

Low Enforce that the mechanism to automatically end sessions
based on user inactivity works in all situations

No brute force protection on the MFA token for
the password reset function

Authentication
& Session
Management

Low Add functionality to block a user or a code after 5 incorrect
attempts within a short timeframe

Runtime components of the Thinkwise platform
can be decompiled into readable source code

Sensitive Data
Exposure

Low It is advised to obfuscate/hide the source code to protect
intellectual property

Appendix A – Results DNS reconnaissance

Subdomain IP address

community.thinkwisesoftware.com 52.222.139.88

docs.thinkwisesoftware.com 144.178.66.249

office.thinkwisesoftware.com 144.178.66.249

updates.thinkwisesoftware.com 144.178.66.249

ssh.thinkwisesoftware.com 185.162.30.162

universal.thinkwisesoftware.com 144.178.66.244

msoid.thinkwisesoftware.com 40.126.32.68

lyncdiscover.thinkwisesoftware.com 52.112.196.12

www.thinkwisesoftware.com 199.60.103.28

metrics.thinkwisesoftware.com 144.178.66.249

staging.thinkwisesoftware.com 199.60.103.228

mail.thinkwisesoftware.com 144.178.66.243

offers.thinkwisesoftware.com 199.60.103.28

enterpriseregistration.thinkwisesoftware.com 20.190.137.40

registry.thinkwisesoftware.com 195.154.68.114

autodiscover.thinkwisesoftware.com 144.178.66.243

kibo.thinkwisesoftware.com 144.178.66.243

vpn.thinkwisesoftware.com 144.178.66.242

blog.thinkwisesoftware.com 199.60.103.28

sip.thinkwisesoftware.com 52.112.192.11

enterpriseenrollment.thinkwisesoftware.com 20.91.147.72

insights.thinkwisesoftware.com 144.178.66.244

filecap.thinkwisesoftware.com 144.178.66.245

thinklab.thinkwisesoftware.com 185.149.37.40

prtg.thinkwisesoftware.com 144.178.66.244

tsf-quarantaine.thinkwisesoftware.com 144.178.66.242

webmail.thinkwisesoftware.com 95.97.179.163

licensing.thinkwisesoftware.com 144.178.66.249

